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Various processing parameters in Selective Laser Melting (SLM) such as scan speed, hatch

distance, substrate temperature, etc., have significant impact on the residual stresses present

in the print. Compressive residual stresses induced by Laser Shock Peening (LSP) enhances

the fatigue life of various metallic components and their alloys. Considering the presence of

tensile residual stresses on A357 Aluminum SLM specimens due to the dispersion of eutectic

silicon particles, LSP is applied to induce compressive residual stresses. Efficient numeri-

cal simulation of LSP is achieved using the Single Explicit Analysis using Time-dependent

Damping (SEATD) technique. Conventionally, the material model used in LSP simulation

employs deterministic parameters for residual stress prediction. The residual stress dis-

tribution predicted by these deterministic parameters are prone to be inaccurate even for

similar LSP configurations due to the intrinsic uncertainties associated with the material

itself. Hence, a joint random field for the material model parameters for the high strain

rate LSP process is developed based on a probabilistic approach known as Bayesian Infer-

ence. The working technique of Bayesian Inference process for material model calibration

is demonstrated using a set of assumed residual stress data. The calibrated material model

parameters are then used in simulating a “candy-bar” coupon subjected to different LSP

patterns. Conventionally casted A357 specimens are processed with a similar technique with
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an aim of quantifying the difference in residual stress distribution as a result of varying

manufacturing methodology. The results reveal that the finely calibrated material model

parameters using Bayesian Inference predicts the assumed experimental residual stress field

with a reasonable accuracy.
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CHAPTER 1

INTRODUCTION

This chapter gives a detailed introduction to two different yet pivotal topics involved in this

research, i.e., Additive Manufacturing (AM) and Laser Shock Peening (LSP). A brief history

of both the processes followed by the prevalent state of the art technology is explained in

Section 1.1 and 1.2. A concise literature review on the integrated laser shock peening -

selective laser melting process is explained in Section 1.3. A detailed rationale for laser

shock peening on selective laser melted specimens and the need for current research with

thesis organization is explained in Section 1.4.

1.1 Additive Manufacturing

Per the American Society for Testing and Materials, Additive Manufacturing (AM) is defined

as a process of joining materials to make objects from 3D model data, usually layer upon

layer, as opposed to subtractive manufacturing methodologies. Synonyms: additive fabrica-

tion, additive processes, additive techniques, additive layer manufacturing, layer manufac-

turing, and freeform fabrication (ASTM-F2792, 2012). Additive manufacturing is capable

in revolutionizing current manufacturing logistics by enhancing parts on demand production

with significant cutback in production cost, fabrication time and carbon footprint (Frazier,

2010, 2014; Baumers et al., 2010). Remote manufacturing of functional parts and better

output due to reduced geometrical constraints has drawn the attention of automotive and

aerospace industries towards additive manufacturing (Frazier, 2014). Surgical instruments

used in bio-medical industries can be fabricated rather quickly at low cost thereby reducing

patient wait time during emergencies (Emelogu et al., 2016; Murr et al., 2010). Additive

manufacturing is briefly classified into powder bed systems, powder feed systems and wire

feed systems (Frazier, 2014). Selective Laser Melting (SLM) (Bremen et al., 2012; Rombouts

1
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et al., 2006; Agapovichev et al., 2016; Rao et al., 2016; Aversa et al., 2017) is a powder bed

system - additive manufacturing process which builds each layer by irradiating the metal

powder with a laser beam. Various metallic elements and their alloys such as titanium, alu-

minum, steel, etc., are used in selective laser melting (Rombouts et al., 2006; Agapovichev

et al., 2016).

Although additive manufacturing provides several benefits compared to traditional man-

ufacturing methodologies, its true potential is yet to be realized. Uncertainty exists between

various structural parts produced by additive manufacturing due to differing surface mor-

phology and machine to machine variability (Selcuk, 2011). Various process parameters

such as build procedure, scan speed, laser power, layer thickness and substrate temperature

adds to the structure uncertainty. Also, high heating and cooling rates during the process

induces thermal fluctuations resulting in tensile residual stresses (Frazier, 2014; Shamsaei

et al., 2015).

Active research is currently underway to address the relationship between various pro-

cessing parameters in selective laser melting and the resulting microstructure, porosity and

mechanical properties (Rao et al., 2016; Trosch et al., 2016; Attar et al., 2014; Kempen et al.,

2011; Aboulkhair et al., 2014). Efficient optimization of the additive manufacturing process

might possibly yield fine structures with reduced porosity and improved material properties.

1.2 Laser Shock Peening

Laser shock peening (LSP) is a modern surface engineering treatment which is extensively

used to impart beneficial compressive residual stresses on the target specimen. It is often

compared with other surface enhancement techniques such as shot peening, waterjet peening,

etc. While shot peening is widely utilized in most industries, the latter is currently under

extensive research (Arola et al., 2006; Singh, 2009). Aviation and aerospace industries make

2
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Figure 1.1. Laser Shock Peening (LSP) - Schematic

use of this process to extend the fatigue life of various metals and alloys (Fairand et al.,

1972; Clauer et al., 1983).

During laser peening, the specimen is generally covered with an opaque overlay (black

paint or aluminum tape) and a transparent medium (commonly water or quartz crystal) as

shown in Fig. 1.1. The incident laser beam (1-10 GW/cm2) on the work piece, through

the overlays, ablates the specimen to produce plasma as a result of reaching extremely high

temperatures (10000◦C) at low deposition times (order of ns). The plasma is restricted

within the transparent overlay to produce high plasma pressure on the specimen surface.

The induced plasma pressure is then transmitted through the specimen as shock waves to

create a compressive residual stress field.

Numerous processing parameters involved in laser peening such as incident laser power

density, laser spatial and temporal profiles, overlap percentage, etc., along with the com-

plexity of laser system and manual labor involved does not only make the process expensive

but also retards its growth in the industry. To address this issue, researchers initially made

use of computers to develop analytical techniques in predicting the residual stresses due to

laser peening (Braisted and Brockman, 1999). Two-dimensional axisymmetric finite element

3
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(FEM) model subjected to a uniform spatial and triangular ramped temporal pressure model

was used for LSP simulation with dynamic explicit analysis for shock loading and static im-

plicit analysis for static equilibrium. Various finite element techniques for laser peening are

further being developed to address the issue of computation cost and time. The recently

developed single explicit analysis using time-dependent damping (SEATD) uses dynamic ex-

plicit analyses for both shocking and variable damping rather than the conventionally used

explicit-implicit approach in order to reduce computation time (Hasser et al., 2016).

Currently, with advancement in computational technology - different optimization tech-

niques are quite often used to obtain the most beneficial residual stress field leading to

favorable mechanical properties (Hasser et al., 2016; Spradlin, 2011; Bhamare et al., 2013).

Continuous research is actively underway to also automate the process of laser peening.

Thus, with the prediction of favorable process parameters obtained through multiple sim-

ulations, combined with experimental validation tests, laser peening has the potential to

develop into an efficient, cheap and time-saving surface enhancement technique.

1.3 Laser Shock Peening on Selective Laser Melted Specimens

Whilst the treatment of selevtive laser melted specimens with laser shock peening is a rel-

atively new process, some research with regards to this integration is recently documented.

Published work by researchers involved the study of laser peening affected residual stress

field on selective laser melted specimens (Kalentics et al., 2017). Two different grades of

selective laser melted steels. i.e., 15-5 matrensitic precipitation hardenable PH1 steel and

austenitic 316 L steel were laser peened and the corresponding residual stress distribution is

compared with the as built unpeened specimens as shown in Fig. 1.2. Fig. 1.2 shows the

in-depth residual stress distribution for the as-built (AB) and non-coated (NC) specimens

with 40% and 80% overlap conditions for laser shots having 1 mm diameter (Kalentics et al.,

4
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Figure 1.2. In-depth Residual Stress Distribution for SLM-LSP Specimens (Kalentics et al.,
2017) c©2017 Reprinted with permission from Elsevier

2017). Also, the effect of various laser peening parameters such as spot overlap, spot diame-

ter and the type of sacrificial coating used to achieve the goal of transforming the detrimental

tensile residual stresses into beneficial compression on the selective laser melted specimens

are studied.

A new process known as 3D-LSP in which the specimen is intermittently laser peened at

the SLM build stage is introduced (Kalentics et al., 2017). Increased depth of compressive

residual stress is noticed with a corresponding increase in the number of SLM layers between

LSP. It is also observed that the 3-D LSP process increases both the magnitude and depth of

compressive residual stresses. Comparison of 3D-LSP and conventional LSP process reveals

that the former with a reduced spot diameter and pulse energy produces deeper compressive

residual stresses than the latter with a larger spot and energy.

A coupled numerical tool for the finite element simulation of SLM-LSP process to obtain

the eventual residual stress field on the 3-D printed specimen (hybrid AM formulation) is

recently developed (Sealya et al., 2016). Thermal stresses induced on the specimen due to

high temperature gradient experienced by the specimen through the build phase affects the

5
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compressive residual stresses due to laser peening. The influence of SLM-layer thickness and

LSP-peak pressure on the final residual stress distribution is studied. The numerical results

reveal that the thermal loads resulting due to thicker layers are of no importance to the

final residual stress whereas thinner layers necessitate a higher magnitude of laser peening

pressure for deeper compression.

Through efficient optimization of the integrated laser shock peening - selective laser

melting process conditions, it is therefore possible to tailor the final mechanical properties

of additive manufactured elements as per need or application.

1.4 Research need

During the process of selective laser melting, each printed layer is subsequently allowed to

cool in order to obtain a solid structure prior to printing the next layer. Previous studies

show that in selective laser melting of metals, the molten layer contracts during the liquid-

solid transformation phase while the solidified metal layer underneath the molten metal layer

inhibits contraction (Kruth et al., 2012; Casavola et al., 2008). As a result, tensile residual

stresses are developed through the depth and gets accumulated with each layer.

The effect of residual stress on the fatigue strength and fatigue crack growth rate (FCGR)

is an interesting topic of research. The influence of residual stress on the fatigue strength

for two different grades of high strength steel is extensively studied (Shiozaki et al., 2015).

Multiple holes were punched on the specimen with varying punch conditions to induce resid-

ual stresses. The punched specimens were then subjected to plane-bending displacement

controlled fatigue tests and the fatigue performance of the as-punched and heat-treated

specimens with varying punch conditions are compared. The fatigue test results reported a

higher fatigue strength for the specimens processed with punch conditions favoring minimum

tensile stresses.

6



www.manaraa.com

Recent studies invloved the influence of processing parameters of selective laser melting

such as scan speed and laser power on the microstructure and mechanical properties of A357

aluminum alloys (Rao et al., 2016). It was reported that the microstructure of A357 alloy

and the dispersion of eutectic silicon particles in the A357 matrix significantly affects its

tensile properties. During plastic deformation, multiple cracks due to surface tension are

observed to initiate at regions comprising a higher concentration of silicon particles. Also,

(Aversa et al., 2017) studied the significance of substrate temperature and post-processing

heat treatment on selective laser melted A357 and observed strong anisotropy with notable

changes in mechanical properties.

(Spierings et al., 2013) compared the fatigue performance of SLM and conventional cast

parts and observed a lower percent of fatigue life for SLM parts at all stress ratios. While

the as-built specimens revealed poor fatigue charectersitics, polished samples reported im-

provement in fatigue life but only at low stress amplitudes. (Song et al., 2015) performed a

comparative study between selective laser melted and wrought metallic specimens for fatigue

life affected by the underlying micro-structure and reported an approximate 70% reduction

in fatigue life for selective laser melted alloys.

(John et al., 1999) examined the fatigue crack growth rate (FCGR) characteristics of

casted titanium alloy with and without laser peening. The FCGR resistance of the laser

peened alloy is observed to be significantly greater than that of unpeened alloy. The increase

in FCGR resistance is attributed to the superposition of applied compressive stresses on the

tensile residual stresses. It is also inferred that the initiated crack remains locked if the

magnitude of the applied stress is lower than the existing residual stress field.

Taking into consideration the aforementioned factors, the surface properties and residual

stress distribution on the selective laser melted specimens need to be improved. Accurate

design and customization of externally applied residual stress by laser shock peening might

thus possibly increase the fatigue life by directing tensile residual stresses out of the critical

7
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region. Whilst most of the work in literature is focused on studying the consequences of

laser shock peening on casted alloys and hybrid AM-LSP processes, importance has to be

given to the difference in fatigue properties between conventionally casted and additively

manufactured metallic specimen subjected to similar laser peening treatment (which is af-

fected by the underlying micro-structural characteristics and residual stress distribution)

for foreseeable replacement in intended application. Therefore, in this thesis, the material

model parameters for the casted and selective laser melted A357 aluminum alloys are initially

calibrated to account for the various sources of uncertainty and subsequently treated with

similar LSP configurations in order to study the induced residual stress distinction which

exists as a result of differing manufacturing methodology.

The experimental set up for laser shock peening with favorable processing parameters and

beam path is presented in Chapter 2. The finite element model with all the inputs needed

for laser peening simulation is explained in detail in Chapter 3. Chapter 4 demonstrates

the application of a probabilistic approach known as Bayesian Inference (BI) to develop

a joint random field for the material model parameters. The influence of different laser

peening patterns on the “candy-bar” coupon with Bayesian inference calibrated material

model parameters is studied in Chapter 5. The various experimental techniques used for

laser beam analysis and calibration is explained in the Appendix.

8
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CHAPTER 2

LASER SHOCK PEENING - EXPERIMENTAL SETUP

2.1 Sample preparation

The material used in this study is an alloy of aluminum with silicon and magnesium, com-

monly known as the A357 grade aluminum alloy. Aluminum is the most favorable element

used in the automotive and aerospace industries due to its numerous beneficial properties.

Low density of aluminum has made it a promising replacement for high strength steels in

the manufacturing sector. Other useful properties of aluminum include high strength to

weight ratio, ductility, castability, malleability, low specific gravity and high conductivity.

Among the various aluminum alloys utilized for different commercial applications, A357 in

the heat treated condition is gaining popularity in the automotive and aerospace sector due

to the strength enhancement provided by various heat treatment processes (Alexopoulos and

Pantelakis, 2004; Zhang et al., 2002) Also, high structural durability of this alloy with good

fatigue, corrosion characteristics and light weight makes it convenient for machining. (Yang

et al., 2013, 2012; Kumar et al., 2007). The selective laser melted specimens used for laser

peening are fabricated from a fine metal powder mainly composed of 90% aluminum, 7%

silicon and 0.6% magnesium. The chemical composition of the casted A357 specimens used

in this work is provided in Table 2.1. The mechanical properties of selective laser melted

and casted A357 alloy is summarized in Table. 2.2.

Table 2.1. Chemical Composition of Casted A357

Alloy element Si Mg Fe Cu Mn Zn Ti

Weight % 6.5-7.5 0.4-0.7 0.2 0.2 0.2 0.1 0.04-0.20
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Table 2.2. Properties of A357 Aluminum Alloy

Property SLM A357 Casted A357

0.2% Yield Strength (MPa) 293 241

Tensile Strength (MPa) 351 310

Elongation at break (%) 10.2 8

Density (kg/m3) 2680

Modulus of Elasticity (GPa) 76

Thermal Conductivity (W/mK) 160

Specific heat (J/kgK) 890

Figure 2.1. Three Point Bend Candy-bar Coupon with Cross Section (All dimensions are in
mm)
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Figure 2.2. Polished SLM and Casted A357 Candy-bar Coupons

For comparing the induced residual stress field due to laser peening, specimens with a

“candy-bar” cross section as shown in Fig. 2.1 is used. The candy-bar geometry is common

for analyzing the coupon’s fatigue charecteristics since it decreases the magnitude of stress

concentration which builds up on the specimen edges as a result of repeated bending (Hasser

et al., 2016; Spradlin, 2011; Luong and Hill, 2008). A 3-D CAD model with this cross section

is initially designed and the specimen is then selective laser melted to obtain a solid structure.

To reduce the accumulated tensile stresses in the build direction, the 3-D printed specimens

are subjected to a T-6 heat treatment process. The SLM-heat treated specimens are observed

to have a grainy and rough surface and hence the specimens are suitably polished using a

rotary polishing machine for a good surface finish. On the other hand, the casted specimens

are machined from an ingot to the required shape and size and finally polished to the same

roughness as that of SLM specimens. The polished specimens used in this work are shown

in Fig. 2.2. The selective laser melted specimens are analyzed for residual stresses in the

11



www.manaraa.com

build direction prior to laser peening using X-Ray diffraction and are observed to have an

approximate residual stress of -25 MPa.

2.2 Laser peening configuration

A high energy pulsed neodyminum doped yttrium aluminum garnet, i.e., Nd:YAG laser at

1064 nm wavelength and 10 Hz frequency is used in this work. A favorable beam path

for laser peening is designed with the help of high damage threshold - laser line mirrors

and collimating lenses to prevent any back reflection which might possibly damage the laser

diode (refer A.1). The schematic and the actual experimental setup used in this work is

illustrated in Fig. 2.3 and 2.4 respectively.

Figure 2.3. Experimental Setup - Schematic

The laser spot diameter emerging out of the laser diode is measured to be 12.7 mm which

is reduced to a working diameter of 3.2 mm with a pair of collimating lenses. A relatively
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Figure 2.4. Experimental Setup - Laser lab

small amount of laser (1% of incident energy) is sampled at the beam splitter (refer A.2) to

measure the laser power and to obtain the laser spatial and temporal distribution, used later

in laser peening process simulation. The spatial distribution of the incident high energy laser

pulse is obtained by sampling 0.01% of the laser beam at the beam splitter. The sampled

beam is processed using a high speed camera and the laser energy distribution as a function

of radial distance is obtained as shown in Fig. 2.5 and 2.6 respectively. The laser is observed

to have a Gaussian profile with a (1/e2) Gaussian diameter of approximately 3.2 mm.

A fast photo detector (refer A.3) is connected to a high resolution oscilloscope to read

the laser temporal distribution. The output of the oscilloscope which provides a plot of laser

intensity versus pulse time is shown in Fig. 2.7. The laser pulse is observed to have a rise

time of 26 ns with a 17 ns Full Width and Half Maximum (FWHM) pulse width.

13



www.manaraa.com

Figure 2.5. 2-D Laser Spatial Distribution

Figure 2.6. 3-D Laser Beam
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Figure 2.7. Laser Temporal Distribution

The output of the beam splitter consisting 99 % incident laser energy is directed to a

servo motor operated X-Y stage. The specimen is placed on the X-Y stage with one end

clamped for an approximate length of 20 mm as shown in Fig. 2.1. An area of 67.2 by 8 mm

is allocated on the specimen surface to accommodate all the laser shots used in this work.

Referring to the literature, the peak power density incident on the aluminum target is

assigned to 3-8 GW/cm2(Sathyajith et al., 2013; Wang et al., 2015; Ding and Ye, 2006). The

specimen is covered with a black tape serving as the opaque overlay owing to its smooth

and uniform surface finish (Sundar et al., 2012). Deionized water is used as the confining

medium to enhance the resulting plasma pressure. The laser peening parameters used in

this work are summarized in Table 2.3.

To ensure efficiency in predicting the residual stress field through finite element simula-

tion of laser peening process, it is critical to determine the high strain rate material model
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Table 2.3. LSP Process Parameters

LSP parameter Magnitude

Laser wavelength 1064 nm

Repetition rate 10 Hz

Pulse type Q-Switch

FWHM pulse width 17 ns

Avg. Energy 3.5 J

Laser spot diameter 3.2 mm

Incident power density 4.35 GW/cm2

Opaque overlay Black tape

Transparent overlay De-ionized water

parameters for the selective laser melted and casted specimens. For the initial material

model calibration, it is common to use a relatively smaller specimen and assume symmetric

boundary conditions for numerical simulations (Zhou et al., 2011, 2012). Hence, the candy-

bar specimen shown in Fig. 2.1 is cut into two halves and treated with consecutive laser

shots at the location shown in Fig. 2.8

For repeatability and to obtain useful statistical data, eight short specimens are initially

laser peened with three completely overlapping laser shots with laser peening configuration

previously shown in Table. 2.3. Following the laser peening treatment, all the specimens

are analyzed for residual stress at the spot center. The statistical data of the residual stress

field is used to develop a joint random field which is successively used for material model

calibration, explained in detail in Chapter 4. A compressive dimple formed as a result of

consecutive laser shots on the sliced candy-bar coupon is shown in Fig. 2.9.
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Figure 2.8. LSP Configuration for Material Model Calibration (all dimensions are in mm)

Figure 2.9. Sliced Candy-bar Specimen with LSP Affected Zone

The recorded experimental parameters used for material model calibration is summarized

in Table. 2.4

17



www.manaraa.com

Table 2.4. Recorded LSP Parameters for Material Modeling

Specimen
type

Coupon
No.

Laser
Energy (J)

Spot
diameter

(mm)

SLM A357

1 2.8 3.2

2 2.7 3.2

3 3.5 3.2

4 3 3.2

Casted A357

5 2.6 3.2

6 3.3 3.2

7 3.2 3.2

8 3.1 3.2
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CHAPTER 3

LASER SHOCK PEENING MODEL FOR FINITE ELEMENT SIMULATION

Ever since the initial success of finite element (FEM) techniques in predicting the residual

stress distribution due to laser peening (Braisted and Brockman, 1999), researchers have

subsequently tried to expedite the process simulation to address the issue of computation cost

and time. Dynamic explicit analysis of the material model subjected to laser shots which is

modeled as a transient pressure load followed by a static implicit relaxation analysis to settle

out the model to quasi-static equilibrium is a standard baseline formulation for the LSP-

FEM model. Since the baseline formulation consumes a large amount of computation time,

secondary techniques to accelerate the process simulation are continuously being developed

(Brockman et al., 2012; Hatamleh et al., 2017; Hasser et al., 2016).

3.1 The Single Explicit Analysis using Time Dependent Damping Method

In this work, finite element simulation of laser shock peening is modeled using the recently de-

veloped Single Explicit Analysis using Time-dependent Damping (SEATD) technique (Has-

ser et al., 2016). The SEATD approach, in contrast to other common techniques for LSP

simulation, uses an explicit only algorithm for both shocking and variable damping periods of

the LSP model rather than employing an explicit-implicit integrated technique to address the

issue of computation cost and time. An extended final explicit damping period is followed

after accommodating all the laser loads to de-excite the LSP-FEM model to quasi-static

equilibrium. It is recently shown that the use of variable damping for laser peening simula-

tion results in significant reduction of computation time without compromising the accuracy

of predicted surface residual stresses (Hasser et al., 2016). Also, a systematic method for

modeling an efficient variable damping profile using modal analysis for different laser peening

conditions is recently developed (Hatamleh et al., 2017). The flowchart describing all the

inputs needed for the SEATD technique is provided in Fig. 3.1.
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Figure 3.1. Inputs for the SEATD Technique

The commercially available FEM package, Abaqus/Explicit (Hibbitt et al., 2001) is used

for all numerical simulations. In this work, the formulation of SEATD technique involves an

assignment of an initial loading period of 2 µs to capture all the plastic interactions due to

laser shocking. This is followed by a variable damping period of 8 µs to settle the model for

the application of next LSP-FEM load. After accommodating all the transient loads, the

LSP-FEM model is subjected to an extended final damping period of 200 µs to attain the

quasi-static equilibrium state.

The sliced specimen with a candy-bar cross section previously shown in Fig. 2.8 is used

for the initial material model calibration with one end subjected to “Encastre” boundary

condition. The Gaussian distribution obtained from the high speed camera shown in Fig.

2.5 is used as the laser spatial profile. For simplicity, the variable damping profile used in
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previous work is currently used to de-excite the LSP model between consecutive laser shots

(Hasser et al., 2016).

Considering the time consuming process of LSP simulation and the need for performing

multiple simulations for surrogate modeling (discussed in Chapter 4), a suitable mesh is

designed to expedite simulations with a reasonable residual stress accuracy. Hence, 8,90,590

coupled temperature-displacement and reduced integration elements (C3D8RT) available in

Abaqus/Explicit with a mesh spacing of 60 µm at spot location and 300 µm elsewhere is used

for the initial material model calibration with the LSP configuration previously shown in Fig.

2.8. Through experience, this mesh spacing is just enough to accommodate the equivalent

plastic strain whilst ensuring stability. Since the opaque overlay absorbs a higher fraction of

thermal energy in generating the high pressure plasma, the residual thermal energy incident

on the specimen is negligible and hence ignored. Although the SEATD method requires

the use of coupled temperature-displacement elements, the thermal effects are ignored by

assuming ambient conditions (T = T0).

3.1.1 Plasma Pressure Model

The laser pressure model is one of the most influential factors affecting the residual stress

distribution due to laser peening. A variety of pressure models are used in the literature

for laser shock peening simulation. A triangular ramp to depict the Gaussian laser pulse

with a linear increase in pressure upto the peak pressure followed by a steady decrease is

quite common (Braisted and Brockman, 1999; Kim et al., 2013). Velocity Interferometer

System for Any Reflector (VISAR) doppler velocimetry is also used to obtain the back free

surface velocity (uF ) which is indeed a function of the plasma pressure (Peyre et al., 2003,

2007; Hfaiedh et al., 2015). While the triangular ramp model is easy to implement, it does

not give a reliable residual stress prediction (Braisted and Brockman, 1999). Also, to avoid

the additional expense on experimental techniques in plasma pressure modeling without

21



www.manaraa.com

affecting the residual stress accuracy, a 1-D hydrodynamic plasma pressure model developed

by (Fabbro et al., 1990) is used.

Per Fabbro, in a water-confined regime, the incident laser energy on the substrate is

used by the plasma for ionization and thermal energy augmentation resulting in expansion

of relatively larger volume of plasma in water. The transient plasma pressure P (t) (GPa)

during the heating phase is a function of the incident laser intensity I(t) (GW/cm2), the

plasma thickness L(t) (cm) and the reduced shock impedance Z (g/cm2s) as shown in Eq.

3.1, 3.2 and 3.3.

1

Z
=

(
1

Z1

+
1

Z2

)
(3.1)

dL(t)

dt
=
P (t)

Z
(3.2)

dL(t)

dt
= P (t)

dL(t)

dt
+

3

2α

d

dt
[P (t)L(t)] (3.3)

where Z1, Z2 (g/cm2s) refers to the shock impedance of water and aluminum respectively

and α is the fraction of internal energy converted to thermal energy.

Coupling Eq. 3.2 and 3.3 results in a non-linear second order ordinary differential equa-

tion (ODE) as given in Eq. 3.4

d2L(t)

dt2
=

I(t)

c1L(t)
− c1 + c2

c1

(
dL(t)

dt

)2
1

L(t)

where c1 =
3Z

4α
and c2 =

Z

2
(3.4)

Subsequent to the heating phase, i.e., past the full width and half maximum (FWHM) of

laser temporal distribution (τ), the existing plasma pressure tends to decrease with time due
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Figure 3.2. Plasma Thickness

to adiabatic cooling as given in Eq. 3.5. The parametric constants used for plasma pressure

modeling in this work are summarized in Table .3.1.

P (t) = P (τ)

(
L(τ)

L(t)

)γ
(3.5)

where γ is the adiabatic constant

Table 3.1. Parametric Constants for Plasma Pressure Modeling

Model parameter Magnitude

Energy ratio (α) 0.25

Water impedance (Z1) 1.65e5 gm/cm2s

Aluminum impedance (Z2) 2.75e6 gm/cm2s

Numerical solution of the coupled Eq. 3.4 - 3.5 ODE gives the required plasma pressure

model. While modeling the plasma pressure, it is ensured that the peak pressure is around 2-
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Figure 3.3. Plasma Pressure

2.5 times the Hugoniot Elastic Limit (HEL) to accommodate all the resulting plastic strains

due to the compressive stress field. The HEL as a function of dynamic yield strength (σd) is

given in Eq. 3.6.

HEL =
(1− ν)σd
(1− 2ν)

(3.6)

where ν is the Poisson’s ratio

Using the temporal distribution obtained from the fast photo detector (Fig. 2.7), the

plasma thickness and plasma pressure history modeled using the aforementioned formulation

is shown in Fig. 3.2 and 3.3 respectively.

3.1.2 Material model

Since the modeled transient pressure pulse results in a rate dependent inelastic behavior of

the LSP model, a viscoplastic material model to determine the flow stress during plastic

deformation is coupled with the linear isotropic elasticity model to render the elasto-plastic
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behavior of the solid. Of all the available flow stress models in the literature, Johnson-Cook

(JC) material model is employed in this work due to its ability to account for the high strain

rates reported in LSP (106 s−1) along with its ease of application (Amarchinta et al., 2010;

Zhou et al., 2012; Peyre et al., 2007). The flow stress as a function of equivalent plastic

strain (εp), the plastic strain rate (ε̇p) and the working temperature (T ) as accommodated

by the Johnson-Cook material model is given in Eq. 3.7.

σy
(
εp, ε̇p, T

)
=

[
A+B(εp)

n

][
1 + Cln

(
ε̇p
ε̇

)][
1−

(
T ∗)m]

where T ∗ =
T − T0
Tm − T0

(3.7)

Here, A,B,C, n,m are the Johnson-Cook parameters, ε̇ is the quasi-static strain rate, Tm

is the melt temperature and T0 is the ambient temperature.

A set of published Johnson-Cook parameters for A357 aluminum alloy by (Gupta et al.,

2014) shown in Table. 3.2 is used in this work, as an initial dataset. Since these published

parameters are just an approximate and depict the material behavior at a low strain rate of

5000 s−1 in contrast to the actual laser peening conditions, a set of high strain rate Johnson-

Cook parameters is developed in this work based on the experimental residual stress using

Bayesian Inference.
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Table 3.2. Johnson-Cook Parameters for A357 Alloy adapted from (Gupta et al., 2014)

JC parameter Value

Yield Strength (A) 313 MPa

Strain hardening parameter(B) 184 MPa

Strain hardening exponent (n) 0.27

Strain rate sensitivity (C) 0.014

Temperature exponent (m) 1.55

Melt temperature (Tm) 557◦C

Reference strain rate (ε̇) 1/s
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CHAPTER 4

UNCERTAINTY QUANTIFICATION OF MATERIAL MODEL USING

BAYESIAN INFERENCE

4.1 Introduction

The sources of error while performing laser shock peening are high due to the numerous

process variables involved. Published articles claim that the fatigue lives of laser peened

components with similar processing conditions are not consistent (Clauer et al., 1981; Clauer,

1996). While the existing material model calibration techniques for laser peening simulation

in the literature deal with deterministic parameters (Amarchinta et al., 2010; Zhou et al.,

2012) consideration of various uncertainties involved in the laser peening process is critical to

optimize the process for the most beneficial stress field. A joint random field for the material

model parameters is therefore developed using a common probabilistic approach known as

Bayesian Inference which can be coupled with any probabilistic optimization technique for

laser shock peening.

Bayesian Inference (BI) is a probabilistic tool commonly used to quantify the uncertainties

associated with an available dataset. The goal of using this technique is to determine the

probability of observing a particular residual stress which is a function of several correlated

random variables (Nelson et al., 2014; Park et al., 2010). The process relies on the principle

of Bayes’ theorem which predicts the probability of an event to occur according to Eq. 4.1.

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

In Eq. 4.1, P (A|B) is the posterior probability of A given B, P (B|A) is the likelihood of B

given A, P (A) is the prior probability of A and P (B) is the total probability of B.

27



www.manaraa.com

4.2 Probabilistic Distribution of Johnson-Cook parameters

In this work, since the Johnson-Cook model parameters obtained from the literature do not

depict the actual physics of laser peening and also to account for various intrinsic errors in

experiments, measurements, the material model and the material itself, a joint probability

mass function (PMF) for the correlated Johnson-Cook parameters, namely, the yield stress

(A), the strain hardening parameter (B), the strain hardening exponent (n) and the strain

rate sensitivity parameter (C) is developed such that it predicts the pre-determined exper-

imental residual stress yet accounts for the estimated experimental and other errors. The

advantage of using Bayesian Inference is that the material model parameters are calibrated

with each Bayesian update with respect to the experimental residual stress while considering

the sources of mutual uncertainty. The modified version of Bayes’ theorem reflecting this

problem statement is shown in Eq. 4.2.

P
(
A,B, n, C

∣∣σres = σexp
)

=

[
P
(
σres = σexp

∣∣A,B, n, C)] ∗ [P (A,B, n, C)
]

P
(
σres = σexp

) (4.2)

In Eq. 4.2, P
(
A,B, n, C

∣∣σres = σexp
)

refers to the posterior probability of obtaining a

joint PMF for the Johnson-Cook parameters, given the experimental residual stress (σexp),

P
(
A,B, n, C

)
is the prior probability (belief) that the Johnson-Cook parameters follow a

certain joint PMF, P
(
σres = σexp

∣∣A,B, n, C) is the likelihood function which refers to the

probability of a particular combination of the Johnson-Cook parameters to yield the exper-

imental residual stress and P
(
σres = σexp

)
refers to the total probability of the predicted

residual stress agreeing with the experimental residual stress for all combinations of Johnson-

Cook parameters.

For the Bayesian updating process, the variables are initially discretized into N uniformly

distributed samples resulting in N t Bayesian grid points in the design hyperspace, t refers

to the number of random variables. Note that the term “random variables” refer to the
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dispersion of Johnson-Cook parameters for the joint PMF computation in Bayesian Inference

whereas design variables or “design points” refer to the Latin Hypercube Sampled (LHS)

points for surrogate modeling. The PMF of random variables and design points can hence be

different. The residual stress at each Bayesian grid point is calculated which is successively

used in Bayesian iterations. For simplicity and to ensure computational efficiency, initially,

the residual stress at only one node on the LSP-FEM model is consistently predicted across

all the Bayesian grid points. The prior probability is initially assumed to be a uniform joint

distribution of Johnson-Cook parameters given by N−t. The upper and lower bounds for

the initial uniform distribution is defined to accommodate a wide range of random variables.

The possibility of obtaining multiple JC parameter sets reflecting the experimental residual

stress is thus highly likely due to the widely dispersed prior joint PMF. However, this issue

is accounted for by incorporating a suitable likelihood function explained later in Section

4.2.2. The prior probability and the likelihood function used with the total probability of

the experimental residual stress throughout the design hyperspace facilitates the posterior

joint PMF determination for the first iteration. For subsequent updates, the posterior PMF

of the previous iteration is considered to be the prior PMF of the current iteration and the

process is repeated until convergence. This process is depicted in a flow chart in Fig. 4.1.

4.2.1 Surrogate Modeling

Since each numerical simulation results in significant consumption of computation time (6

hours with 5 CPUs), an approximate for the LSP-FEM model is developed to calculate the

residual stress at each Bayesian grid point. Due to its retianed fidelity over a large domain

in the design hyperspace, a non-linear regression based kriging surrogate model is developed

(Forrester et al., 2008; Forrester and Keane, 2009). To develop an efficient and reliable

surrogate model, a specified minimum set of design points are initially sampled using the rank

correlated LHS plan such that all the sampled points are evenly distributed in the domain
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Figure 4.1. Bayesian Inference of JC parameters
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without any repetition. The Johnson-Cook parameters previously established in Table 4.2 are

thus considered the mean of design points and a suitable coefficient of variation is assumed

for parameter dispersion through the mean for the initial LHS. Numerical simulation of

laser peening process is carried out at the design points and the residual stress at the node

corresponding to the spot center is recorded. A surrogate model for the residual stress is

then developed based on the recorded data.

4.2.2 Likelihood function

In this work, a Gaussian type kernel density probability mass function given in Eq. 4.3 is

assumed to serve as the likelihood function (Nelson et al., 2014)

P (σres|A,B, n, C) = exp

(
−(σres − σexp)2

2h2

)
(4.3)

in which σres denotes the predicted residual stress, σexp is the experimental residual stress

and h is a free or the smoothing parameter more often known as the “standard error”. The

likelihood function would result in a non-zero PMF if the predicted residual stress with a

particular set of JC constants is in the neighborhood of experimental residual stress. Else,

the user-defined standard error (h) would penalize the predicted stress and return a near-

zero PMF. The selection of standard error is very critical to account for all the sources of

uncertainty.

For simplicity, the experimental data is often assumed to follow a Gaussian distribution

and the corresponding asymptotic mean squared error (AMSE) between the assumed and

kernel distribution is optimized. The published optimal standard error as a function of the

Gaussian distributed experimental data (Turlach et al., 1993) is given in Eq. 4.4

h = 1.06σq−
1
5 (4.4)

In the above equation, σ is the standard deviation of the experimental data and q denotes

the number of experimental data points.
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4.2.3 Posterior Probability

The posterior probability, i.e., the joint PMF of Johnson-Cook model parameters, given

the experimental residual stress is determined using the prior probability, total probability

and likelihood function as explained previously. A concise expression for the first posterior

probability calculation used in this work is given in Eq. 4.5

PI
(
Ai, Bj, nk, Cl|σres

)
=

[
exp

(
−(σi,j,k,lres − σexp)2

2h2

)
N−t

]
∗[ N∑

i=1

N∑
j=1

N∑
k=1

N∑
l=1

exp

(
−(σi,j,k,lres − σexp)2

2h2

)
N−t

]−1 (4.5)

In the above equation, I is the index of Bayesian iteration and N−t represents the uniform

distribution of Johnson-Cook parameters for prior probability in the first Bayesian update.

For subsequent iterations (I > 1), the term N−t is replaced by PI−1

(
Ai, Bj, nk, Cl|σres

)
,

i.e., the posterior probability of the previous iteration. The process is then iterated upon

convergence.

4.3 Extending Bayesian Inference across Multiple Experimental Dimensions

The efficiency of Bayesian inference and the degree of accuracy of the obtained joint PMF

for the Johnson-Cook parameters is highly dependent on the number of design points in the

surrogate model and the number of uniform grid points (N) across each parameter. Keeping

the number of design points a mere constant, a coarser N would result in fewer Bayesian grid

points and a finer N would result in higher grid points thereby predicting a more accurate

solution. However, while using a finer N , the possibility of multiple grid points to predict

the given experimental residual stress is highly likely.

In addition, while the experimental residual stress distribution varies across the longitudi-

nal direction, it is expected that the FEM simulation with the Bayesian inference calibrated

32



www.manaraa.com

Johnson-Cook parameters give a similar distribution. However, when using a fine grid mesh,

the possibility of predicting the experimental residual stress at a different location with con-

sistent Johnson-Cook parameters is highly unlikely with independent Bayesian iterations

across the FEM nodes.

Therefore, the likelihood function formulated in Eq. 4.3 is modified with an aim to

predict a reliable set of Johnson-Cook parameters which further gives a reasonable residual

stress field.

For this reason, the terms σres, σexp and h, which initially was a scalar is now a vector

containing residual stress values at different locations. The posterior probability with the

modified likelihood function is given in Eq. 4.6a and 4.6b respectively.

For I = 1

PI
(
Ai, Bj, nk, Cl| ~σres

)
=

[
exp

(
−| ~σresi,j,k,l − ~σexp|2

2|~h|2

)
N−t

]
∗[ N∑

i=1

N∑
j=1

N∑
k=1

N∑
l=1

exp

(
−| ~σresi,j,k,l − ~σexp|2

2|~h|2

)
N−t

]−1 (4.6a)

For I > 1

PI
(
Ai, Bj, nk, Cl| ~σres

)
=

[
exp

(
−| ~σresi,j,k,l − ~σexp|2

2|~h|2

)
PI−1

(
Ai, Bj, nk, Cl|σres

)]
∗[ N∑

i=1

N∑
j=1

N∑
k=1

N∑
l=1

exp

(
−| ~σresi,j,k,l − ~σexp|2

2|~h|2

)
PI−1

(
Ai, Bj, nk, Cl|σres

)]−1

(4.6b)

In the above equations, −| ~σresi,j,k,l − ~σexp| represents the norm of the difference between

the multidimensional predicted and experimental residual stress vector.

4.4 Material Model Calibration of Casted and SLM A357

To demonstrate the process of Bayesian Inference, a set of test data for the residual stress

field averaged at 4 spatial nodes previously shown in Fig. 2.8 is assumed for the SLM
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and casted A357 specimens as shown in Table. 4.1. The corresponding residual stresses are

labeled as RS-0, RS-0.5, RS-1 and RS-1.5 as per the longitudinal distance from spot center.

Table 4.1. Assumed Test Data for Experimental Residual Stress (for BI Demonstration)

XRD-Location (mm) SLM A357 RS (MPa) Casted A357 RS (MPa)

0 (RS-0 ) -176 -287

0.5 (RS-0.5 ) -130 -148

1 (RS-1 ) -68 -87

1.5 (RS-1.5 ) -34 -47

As per the flow chart given in Fig. 4.1, the process of Bayesian inference begins with the

formulation of a surrogate model to predict the surface residual stress distribution on the

sliced candybar specimen subjected to three consecutive laser shots. For a reliable surrogate

model, the definition of mean and coefficient of variation for the design points are critical.

The Johnson-Cook parameters for A357 alloy given in Table. 3.2 is considered the mean for

the SLM and casted alloys. A tolerance level of 40% is initially assumed for a wide dispersion

of design points. With these statistical data, a set of 50 design points are obtained based on

the LHS plan such that there are no repetitions. Finite element simulation of LSP with the

LHS parameters for A, B, n and C results in 50 different residual stress values which are

fed into the surrogate model. The LHS domain for each Johnson-Cook parameter is given

in Table. 4.2

For the Bayesian Inference process, each parameter is discretized into 95 grid points

thereby giving rise to 954 = 8 ∗ 107 Bayesian grid points. The surrogate model is iteratively

used to obtain a reasonable residual stress prediction across all the Bayesian grid points. The

prior PMF of the residual stress at the spot center before Bayesian inference is given in Fig.
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Table 4.2. LHS Domain

JC parameter Lower bound Upper bound

A (MPa) 187.8 438.2

B (MPa) 110.4 257.6

n 0.162 0.378

C 0.0084 0.0196

Figure 4.2. Residual Stress - Prior PMF

4.2. Note that while this curve on the plot is continuous, it indeed represents a PMF not

a probability density function (PDF), since it represents the probability of discrete residual

stress values (hence the sum of PMF probabilities is unity, rather than the integral of the

curve being unity). The same is true for subsequent PMF plots in this section.

35



www.manaraa.com

It is noticed from Fig. 4.2 that the prior PMF of residual stress is relatively flat with an

upper and lower bound of -50 MPa and -450 MPa respectively. The peak probability as seen

in Fig. 4.2 is 1.48 ∗ 10−7. While the range of prior PMF is wide resulting in a higher and

almost equal probability for unrealistic residual stresses, it is expected to obtain a central-

tendency distribution with the mean experimental residual stress while performing successive

Bayesian iterations. Also, the prior PMF for the residual stress in Fig. 4.2 is consistent with

both SLM and casted A357 specimens due to an assumption of similar initial parameter

dispersion. The prior probability for the first iteration is 1/N t = 1.23 ∗ 10−8. For the

likelihood function given in Eq. 4.3, the calculation of standard error h is critical. Hence,

the statistical data, i.e., the mean (µexp) and standard deviation (σ) of experimental residual

stress are calculated for the SLM and casted specimens.

Figure 4.3. SLM Residual Stress (RS-0 ) - Iteration 1

Initially, for the SLM specimens, the mean and standard deviation of the experimentally

determined residual stress at the spot center (RS-0 ) are assumed to be -176 MPa and -22

MPa respectively. In this work, the mean (µexp) is considered to be the actual residual
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stress which is to be predicted by the calibrated Johnson-Cook parameters. Assuming the

experimental data points to contain normally distributed error, using Eq. 4.4, the value

of standard error results in -17.6MPa. Having calculated all the Bayesian parameters, the

first iteration of the Bayesian Inference process results in the distribution given in Fig. 4.3.

It is evident from Fig. 4.3 that the current iteration has resulted in the predicted residual

stress being dispersed around the experimental residual stress which is indeed the mean of

the current distribution.

Figure 4.4. SLM Residual Stress (RS-0 ) - Iteration 3

Fig. 4.4 depicts the residual stress PMF after the final iteration, i.e., Iteration-3. It

is seen that the peak probability is now increased from 9.3 ∗ 10−8 to 1.6 ∗ 10−7. Also, on

comparing Fig. 4.3 and 4.4, a reduced dispersion for the third iteration is observed. This is

due to the fact that the current joint posterior PMF is calculated based on the prior posterior

PMF.

Similar process is repeated for the casted A357 specimens with an assumed µexp, σ and

h of -287 MPa, -35.73 MPa and -28.7 MPa respectively. The Johnson-Cook parameters
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Table 4.3. Calibrated Johnson-Cook Parameters for RS-0

JC parameter SLM (RS-0) Casted (RS-0)

A (MPa) 286.36 345

B (MPa) 173.03 180.86

n 0.3458 0.3711

C 0.0104 0.0185

which predict the actual residual stress at the spot center is obtained from the 4-D joint

PMF of A, B, n and C. The calibrated Johnson-Cook parameters for predicting the residual

stress at spot center (RS − 0) is given in Table. 4.3.

4.4.1 Multidimensional Extension

Since a finer grid mesh (95 grid points for A, B, n and C ) is used in the previous section

for material model calibration at the spot center, the possibility of the Bayesian inferred

Johnson-Cook parameters to predict the actual residual stress at other longitudinal nodes

is highly unlikely as previously explained in Section 4.3. To study this, the surrogate model

for residual stress is redesigned for the nodes RS − 0.5, RS − 1 and RS − 1.5 respectively.

Table 4.4 gives the output of Bayesian Inference for the individual spatial nodes.

It is noted from Table. 4.4 that the Johnson-Cook parameters previously predicted

in Table. 4.3 is not consistent with different spatial nodes in the longitudinal direction.

The residual stresses predicted by the Johnson-Cook parameters in Tables. 4.3 and 4.4 at

different spatial nodes for the SLM and casted specimens are compared in Fig. 4.5 and 4.6

respectively.
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Table 4.4. Bayesian Inference Output for RS-0.5, RS-1 and RS-1.5

SLM Casted

Bayesian
Inferred JC
Parameter

Spatial node Spatial node

RS-0.5 RS-1 RS-1.5 RS-0.5 RS-1 RS-1.5

A (MPa) 190.47 246.40 238.41 273.04 190.47 193.12

B (MPa) 243.50 248.20 180.86 110.4 157.37 124.5

n 0.1712 0.2447 0.2080 0.2677 0.1666 0.2838

C 0.0129 0.0116 0.0098 0.0084 0.0108 0.0130

Figure 4.5. Longitudinal Stress - Radial Distribution for SLM Specimens

Although each residual stress curve representing a unique set of Johnson-Cook parameters

(Table. 4.4) predict the assumed experimental residual stress at individual nodes at a radial

distance of 0.5, 1 and 1.5 mm as seen in Fig. 4.5 and 4.6, none of the parameters predict the
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Figure 4.6. Longitudinal Stress - Radial Distribution for Casted Specimens

actual spatial stress field. Hence, a fine calibration of the Johnson-Cook parameters while

also considering the experimental stress field is performed using Bayesian Inference.

A modified formulation for the posterior probability suggested in Eq. 4.6a and 4.6b

employing the vectors ~σexp and ~σres depicting the experimental and residual field stresses

is therefore used for fine calibration. The multidimensional Bayesian Inference calibrated

Johnson-Cook parameters for the SLM and casted specimens are given in Table. 4.5.

Fig. 4.7 and 4.8 illustrates the residual stress prediction with these Johnson-Cook param-

eters. It is observed that the fine calibration considering multiple experimental dimensions

results in accurate results for the SLM specimens and gives a reasonable result for the casted

specimens. The resulting error between the assumed experimental and predicted residual

stress is due to the accumulated errors in the spatial, temporal distribution of the laser

profile and also the designed surrogate model. The Bayesian error is however calculated

to be within 10% and hence the procedure can be further coupled to a probabilistic design
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Figure 4.7. Longitudinal Stress for SLM Specimens with Spatially Calibrated JC Parameters

Table 4.5. Calibrated Johnson-Cook Parameters for the Residual Stress Field

JC parameter SLM Casted

A (MPa) 187.8 265.06

B (MPa) 257.6 257.6

n 0.1643 0.3045

C 0.0160 0.0196

optimization process for LSP induced stress field, given the actual experimental test results

for the residual stresses.
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Figure 4.8. Longitudinal Stress for Casted Specimens with Spatially Calibrated JC Param-
eters
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CHAPTER 5

RESIDUAL STRESS DISTRIBUTION FOR MULTIPLE LSP SHOTS

To differentiate the residual stress distribution between the SLM and casted A357 specimens,

a candy-bar coupon previously shown in Fig. 2.1 is subjected to multiple laser shots. Two

different patterns of LSP shots are designed and the SLM and casted specimens are laser

peened with the configuration given in Table. 2.3. The laser peened specimens are then

analyzed for the surface and in-depth residual stresses using x-ray diffraction.

Given the importance of residual stress distribution through the surface and depth, an

attempt is made to develop two different laser peening patterns to maximize the compressive

residual stress field in these directions. The first pattern is designed in such a way that the

induced compressive stresses offer 100% coverage throughout the laser peen area. For this

purpose, a series of 164 circular LSP shots are designed with 41 shots in each row with an

approximate overlap of 50 %. The schematic of this pattern is shown in Fig. 5.1.

Figure 5.1. Pattern - 1 with circular LSP shots (100% coverage of laser peen area) (all
dimensions are in mm)

The second LSP pattern is designed to study the penetration of induced compressive

stresses through the depth of the specimen. Hence, 2 rows with 54 circular LSP shots are

designed following the LSP path shown in in Fig. 5.2. Once the end point is reached, the spec-

imen is processed again with a similar pattern to induce deeper compressive stresses.Hence
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a total of 108 LSP shots are used for this pattern. The pattern configuration is summarized

in Table. 5.1. The actual laser peened specimens with patterns 1 and 2 are shown in Fig.

5.3.

Figure 5.2. Pattern - 2 with circular LSP shots (Consecutive shots) (all dimensions are in
mm)

Table 5.1. Laser Shock Peening - Pattern

Parameter Pattern-1 Pattern-2

LSP shot shape Circle

Spot diameter (mm) 3.2 3.2

Overlap 50 % 25 %

Number of shots in a row 41 27

Number of rows 4 2

Total shots 164 108

Following the experiment, the candybar coupon is modeled in Abaqus/Explicit. Since a

repetition of residual stress distribution is expected along the surface, the working area is

reduced to a small patch of 12 by 8 mm as depicted in Fig. 5.4. A suitable mesh is designed
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(a) Coupon Processed with Pattern-1 (b) Coupon Processed with Pattern-2

(c) Pattern-1 Compressive Dimple (d) Pattern-2 Compressive Dimple

Figure 5.3. Laser Shock Peened Candybar Coupons

to simulate the LSP model with the calibrated Johnson-Cook parameters from Table. 4.5.

Therefore, in this study, 22,28,604 temperature displacement coupled reduced integration

elements (C3D8RT) with a uniform mesh spacing of 60 µm through the patch surface and

100 µm through the specimen depth is used.

Figure 5.4. Candybar - FEM Simplification
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For the current study, the distribution of residual stresses for different laser peening

patterns shown in Fig. 5.1 and 5.2 is studied by simulating the candy-bar coupon in

Abaqus/Explicit using the SEATD technique with the finite element formulation discussed

above. The Johnson-Cook parameters for the SLM specimens given in Table 4.5 are used

for pattern comparison.

Figure 5.5. Compressive Stress Field due to Pattern-1

Fig. 5.5 and 5.6 illustrates the compressive field resulting due to LSP for Pattern-1.

Although there are some tensile residual stresses observed in between laser shots, it is ac-

counted for the Gaussian distribution of the laser beam. This necessitates the use of a higher

overlap for subsequent work to guarantee 100% coverage of compressive stresses through the

specimen surface area.

Fig. 5.7 and 5.8 depicts the in-depth compressive residual stress distribution on the

candy-bar coupon subjected to LSP-Pattern 2. It is seen that the compressive stresses

penetrate through a depth of 2.1 mm and hence the designed pattern indeed produces a

deeper penetration of compressive stress field. A detailed comparison between SLM and
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Figure 5.6. Residual Stress Distribution through the Path shown in Fig. 5.5

casted A357 specimens with the actual experimental residual stress field will be addressed

in further studies.
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Figure 5.7. Compressive Stress Field due to Pattern-2

Figure 5.8. Residual Stress Distribution through the Path shown in Fig. 5.7

48



www.manaraa.com

CHAPTER 6

CONCLUSION

Tensile residual stresses are developed in the A357-SLM specimens due to fluctuating tem-

perature gradient reported during the heating-cooling phase in SLM and also due to the

eutectic dispersion of silicon particles. Hence, to delay the crack nucleation and maximize

the lifetime of SLM specimens under continuous and cyclic loads, two different configura-

tions of laser shock peening is applied on SLM-A357 candy-bar coupons to counteract the

existing tensile stresses. A favorable beam path to perform laser peening experiments is

initially developed with the aid of high damage threshold laser optics. A new state of the

art beam analysis device is used to obtain the spatial and temporal distribution of the laser

pulse which is fed into all numerical simulations for laser peening. Additionally, to develop

a reliable material model which can be further used in reliability based optimization of

laser shock peening, a probabilistic approach called Bayesian Inference is introduced to cali-

brate the Johnson-Cook material model parameters at high strain rates. The Johnson-Cook

parameters are further subjected to fine calibration by modifying the governing equation

of Bayesian Inference to accommodate the residual stress field. The working technique of

Bayesian Inference is demonstrated using a set of assumed experimental stress results. The

Bayesian Inference-calibrated Johnson-Cook parameters are observed to predict the assumed

residual stress field with a reasonably good accuracy. Finally, the influence of two laser peen-

ing patterns to achieve different compressive stress field on the candy-bar coupon is studied.

The result indicates to employ an additional overlap for Pattern-1 to achieve 100% coverage

of compressive stress field on the specimen surface area. Deeper compressive stresses are

observed when the coupon is subjected to Pattern-2. Further studies would address the dif-

ference between the microstructure, residual stress distribution and fatigue life for the SLM

and casted A357 specimens processed with similar laser peening treatment.

49



www.manaraa.com

APPENDIX

EXPERIMENTAL APPARATUS

A.1 Beam Path

The laser system used in this work is the Quanta-Ray Spectra Physics Pro-350 high energy

Nd:YAG laser. The laser produces a high fluence with a range of 40-50 J/cm2 for a 3.5 mm

diameter on the incident optics. Hence, high damage threshold laser line mirrors and lenses

are used in this work to design the most optimal beam path for LSP.

Three NB1-K14 uncoated laser line mirrors with 1 inch outer diameter and 0 - 45◦ angle

of incidence is used to reflect the 12.7 mm incident laser beam by 90◦. The mirrors also

have a high damage threshold of 140 J/cm2 for a 3.5 mm spot to withstand high fluence

while reflecting the beam to the working area. Since the near infrared (NIR) beam out of

the laser system is observed to have significant divergence, the mirrors are placed as close to

each other as possible to prevent any additional divergence due to beam reflection. Following

the reflection from the laser line mirrors, the laser beam is allowed to pass through an anti-

reflection coated, N-BK7 substrate, 2 inch plano-convex lens with a focal length of 400 mm.

The grade C - anti-reflection coated positive lens prevents most of the back reflection from

the working area to prevent any damage to the laser diode. The plano-convex lens used in

this work has a very high damage threshold of 150J/cm2 for a 3.5 mm laser spot diameter

and hence guarantees to withstand high power densities. The incident diverging laser beam

through the positive lens converges at the focal point. At a distance of 15 mm past the

focal point, the beam is observed to have a 1/e2 Gaussian diameter of 3.2 mm required for

laser peening. For beam collimation, an uncoated, N-BK7 substrate, 2 inch plano-concave

lens with a focal length of -75 mm is placed at a distance of 55 mm from the first lens. An

uncoated plano-concave lens is used to withstand the high fluence of the incident laser beam

due to the reduced spot diameter. The plano-concave lens is placed on a fine calibration

ruler to vary the beam diameter whilst ensuring reasonable beam collimation.
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A.2 Beam Splitter and Beam Tap

The collimated laser beam out of the plano-concave lens is allowed to pass through a beam-

splitter for laser beam analysis. The beam splitter used in this study samples 1% of the

incident laser beam and transmits the rest. The LBS-300 NIR beam splitter shown in Fig.

A.1a has a damage threshold of only 1 J/cm2 which is significantly low for the laser system

used in this work. Hence, the laser is operated on the “single shot” mode rather than working

on the “continuous” mode to decrease the incident power density as much as possible.

(a) LBS-300 NIR Beam Splitter with a C- mount
camera

(b) Beam Tap 1 and 2

Figure A.1. Laser Spatial Distribution - Apparatus

The beam splitter used in this work has two outlets. One outlet is for transmitting 99%

of the high energy laser beam to the working area. A high speed camera as shown in Fig.

A.1a is placed at the second outlet. The sampled laser beam is further attenuated by two

monochromatic filters which further reduces the laser intensity transmitted to the camera

by 99 %. The camera measures the laser intensity and enables the user to visualize the 2-D
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and 3-D laser beam using a beam analysis software called BeamGage. The output from the

camera using BeamGage for an attenuated laser beam is shown in Fig. A.2.

Figure A.2. Quanta-Ray Laser Beam Spatial Distribution using BeamGage

Since the laser pulse is observed to have similar spatial profiles for high power densi-

ties used in laser peening, the spatial distribution is not measured while performing the

laser peening experiment. Hence, the weaker beam splitter is replaced with a high damage

threshold beam tap, shown in Fig. A.1b. The coupled beam tap 1 and 2 used in this work

has a high damage threshold of 1 MJ/cm2 with 2 outlets. The beam tap is observed to

reduce the laser intensity by 99.75 % at the second outlet making it useful for measuring the

laser temporal distribution and laser energy.

A.3 Fast Photodetector and Laser Energy Meter

The 0.25 % sampled laser beam out of the beam tap is used for measuring the useful pulse

width and energy per laser pulse. The fast photodetector shown in Fig. A.3a is a photo

sensor that captures the incident photons on the detector and coverts it to a corresponding

electrical pulse. This electrical pulse is read by an oscilloscope which in turn provides

the temporal distribution of the laser pulse. Pulse saturation is observed when the 0.25%

sampled laser beam is directly incident on the photo sensor. Hence, to prevent saturation and
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to avoid additional attenuation which might possibly result in complete beam absorption,

the sampled laser beam is made incident on a white matte surface as shown in Fig. A.3c and

the back scattering of the sampled laser pulse is caught by the sensor. Fig. A.3b illustrates

the temporal distribution of the laser pulse on a high resolution oscilloscope.

(a) Fast Photo Detector
(b) Laser Pulse in Oscilloscope

(c) Setup for Temporal Distribution

Figure A.3. Laser Temporal Distribution
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For continuous measurement of laser energy while performing the experiment, a high

damage threshold laser energy meter with a diffuser shown in Fig. A.4c is used. The

energy meter consists of a detection sensor to measure the intensity of the laser beam and

is connected to an external computer to read the laser energy through the StarLab software.

The laser energy meter and the measured laser energy for laser peening patterns 1 and 2

discussed in Chapter 5 is shown in Fig. A.4a and A.4b.

(a) Pattern-1 Measured Energy (b) Pattern-2 Measured Energy

(c) Energy Meter

Figure A.4. Laser Energy
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